История развития и передовые области применения ферментов (обзор)
Аннотация и ключевые слова
Аннотация:
Природные катализаторы – ферменты становятся все более популярными и привлекательными для промышленности благодаря своей экологичности и высокой эффективности по сравнению с традиционными методами. Данный обзор прослеживает путь развития этой области от первых шагов до современных достижений, основанных на тонкой настройке ферментов и их эволюции. Научные статьи обзора были отобраны по ключевым словам, связанным с целлюлолитическими и лигнинолитическими ферментами, штаммами бактерий и грибов, а также использованием промышленных отходов в качестве питательных сред для продуцентов ферментов. Продемонстрированы передовые примеры применения ферментов в промышленности.

Ключевые слова:
ферменты, лигноцеллюлозные отходы, бактерии, грибы, питательные среды, промышленное производство
Список литературы

1. Microbial lignocellulolytic enzymes for the effective valorization of lignocellulosic biomass: a review / P. Nargotra, V. Sharma, Y.-C. Lee [et al.] // Catalysts. – 2022. – Vol. 13. – P. 83. – DOI:https://doi.org/10.3390/catal13010083

2. Current perspective on production and applications of microbial cellulases: a review / N. Bhardwaj, B. Kumar, K. Agrawal [et al.] // Bioresources and Bioprocessing. – 2021. – Vol. 8. – P. 95. – DOI:https://doi.org/10.1186/s40643-021-00447-6

3. Ejaz, U. Cellulases: from bioactivity to a variety of industrial applications / U. Ejaz, M. Sohail, A Ghanemi // Biomimetics. – 2021. – Vol. 6. – P. 44. – DOI:https://doi.org/10.3390/biomimetics6030044

4. Chauhan, A. K. Synthetic dyes degradation using lignolytic enzymes produced from Halopiger aswanensis strain ABC_IITR by solid state fermentation / A. K. Chauhan, B. Choudhury // Chemosphere. – 2021. – Vol. 273. – P. 12967. – DOI:https://doi.org/10.1016/j.chemosphere.2021.129671

5. Comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges / H. El-Gendi, A. K. Saleh, R. Badierah [et al.] // Journal of Fungi. – 2021. – Vol. 8. – P. 23. – DOI:https://doi.org/10.3390/jof8010023

6. Saxena, S. Microbial enzymes and their industrial applications / S. Saxena // Applied Microbiology. – New Delhi : Springer, 2015. – P. 121–154. – DOI:https://doi.org/10.1007/978-81-322-2259-0_9

7. Абрамова, З. И. Биохимия: ферменты и коферменты : учебное пособие. Часть 2 / З. И. Абрамова. – Казань : КФУ, 2021. – 247 с.

8. Buchholz, K. Enzyme technology: history and current trends: innovations and future directions / K. Buchholz, U. T. Bornscheuer // Applied Bioengineering. – [S. l.] : [s. n.], 2017. – P. 11–46. – DOI:https://doi.org/10.1002/9783527800599.ch2

9. Slagman, S. Biocatalytic routes to anti-viral agents and their synthetic intermediates / S. Slagman, W. D. Fessner // Chemical Society Reviews. – 2021. – Vol. 50, № 3. – P. 1968–2009. – DOI:https://doi.org/10.1039/D0CS00763C

10. Nazor, J. Enzyme evolution for industrial biocatalytic cascades / J. Nazor, J. Liu, G. Huisman // Current Opinion in Biotechnology. – 2021. – Vol. 69. – P. 182–190. – DOI:https://doi.org/10.1016/j.copbio.2020.12.013

11. Lignocellulose degradation in bacteria and fungi: cellulosomes and industrial relevance / K.-T. Hsin, H. Lee, Y.-C. Huang [et al.] // Frontiers in Microbiology. – 2025. – Vol. 16. –P. 1583746. – DOI:https://doi.org/10.3389/fmicb.2025.1583746

12. Weimer, P. J. Degradation of cellulose and hemicellulose by ruminal microorganisms / P. J. Weimer // Microorganisms. – 2022. – Vol. 10. – P. 2345. – DOI:https://doi.org/10.3390/microorganisms10122345

13. Wood decay fungi: an analysis of worldwide research / T. Li, L. Cui, X. Song [et al.] // Journal of Soils and Sediments. – 2022. – Vol. 22. – P. 1688–1702. – DOI:https://doi.org/10.1007/s11368-022-03225-9

14. Bhardwaj, N. A detailed overview of xylanases: an emerging biomolecule for current and future prospective / N. Bhardwaj, B. Kumar, P. Verma // Bioresources and Bioprocessing. – 2019. – Vol. 6. – P. 276. – DOI:https://doi.org/10.1186/s40643-019-0276-2

15. Datta, R. Enzymatic degradation of cellulose in soil: a review / R. Datta // Heliyon. – 2024. – Vol. 10. – e24022. – DOI:https://doi.org/10.1016/j.heliyon.2024.e24022

16. Biochemical characterization of an endoglucanase GH7 from thermophile Thermothielavioides terrestris expressed on aspergillus nidulans / R. C. Alnoch, J. C. S. Salgado, G. S. Alves [et al.] // Catalysts. – 2023. – Vol. 13. – P. 582. – DOI:https://doi.org/10.3390/catal13030582

17. Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass / K. Hirano, M. Kurosaki, S. Nihei [et al.] // Scientific Reports. – 2016. – Vol. 6. – P. 35709. – DOI:https://doi.org/10.1038/srep35709

18. Puchart, V. Xylanases of glycoside hydrolase family 30 – an overview / V. Puchart, K. Šuchová, P. Biely // Biotechnology Advances. – 2021. – Vol. 47. – P. 107704. – DOI:https://doi.org/10.1016/j.biotechadv.2021.107704

19. Dawood, A. Applications of microbial beta-mannanases / A. Dawood, K. Ma // Frontiers in Bioengineering and Biotechnology. – 2020. – Vol. 8. – P. 598630. – DOI:https://doi.org/10.3389/fbioe.2020.598630

20. Carbohydrate-active enzymes in Pythium and their role in plant cell wall and storage polysaccharide degradation // M. M. Zerillo, B. N. Adhikari, J. P. Hamilton [et al.] // PLoS One. – 2013. – Vol. 8. – P. e72572. – DOI:https://doi.org/10.1371/journal.pone.0072572

21. An overview of recent developments in hetero-catalytic conversion of cellulosic biomass / L. Ward, M. S. Islam, N. Kao [et al.] // Research Communication in Engineering Science and Technology. – 2020. – Vol. 4. – P. 43–54. – DOI:https://doi.org/10.22597/rcest.v4.65

22. A parts list for fungal cellulosomes revealed by comparative genomics / C. H. Haitjema, S. P. Gilmore, J. K. Henske [et al.] // Nature Microbiology. – 2017. – Vol. 2. – P. 17087. – DOI:https://doi.org/10.1038/nmicrobiol.2017.87

23. The hydrolysis mechanism of a GH45 cellulase and its potential relation to lytic transglycosylase and expansin function / V. S. Bharadwaj, B. C. Knott, J. Ståhlberg [et al.] // Journal of Biological Chemistry. – 2020. – Vol. 295. – P. 4477–4487. – DOI:https://doi.org/10.1074/jbc.RA119.011406

24. Ioelovich, M. Preparation, characterization and application of amorphized cellulose – a review / M. Ioelovich // Polymers. – 2021. – Vol. 13. – P. 4313. – DOI:https://doi.org/10.3390/polym13244313

25. Higuchi, T. Microbial degradation of lignin: role of lignin peroxidase, manganese peroxidase, and laccase / T. Higuchi // The Proceedings of the Japan Academy. Series B. – 2004. – Vol. 80. – P. 204–214. – DOI:https://doi.org/10.2183/pjab.80.204

26. Semana, P. Four aromatic intradiol ring cleavage dioxygenases from Aspergillus niger / P. Semana, J. Powlowski // Applied Environmental Microbiology. – 2019. – Vol. 85. – P. 1786. – DOI:https://doi.org/10.1128/AEM.01786-19

27. Li, X. Biotransformation of lignin: mechanisms, applications and future work / X. Li, Y. Zheng // Biotechnology Progress. – 2020. – Vol. 36. – P. e2922. – DOI:https://doi.org/10.1002/btpr.2922

28. Effective bioremediation of pulp and paper mill wastewater using Bacillus cereus as a possible kraft lignin-degrading bacterium / R. Kumar, A. Singh, A. Maurya [et al.] // Bioresource Technology. – 2022. – Vol. 352. – P. 127076. – DOI:https://doi.org/10.1016/j.biortech.2022.127076

29. Potential of lignocellulolytic actinomycete isolates in the degradation of rice straw / M. Chauhan, S. Kumar, M. M. Rather [et al.] // Hazardous Chemicals: Overview, Toxicological Profile, Challenges, and Future Perspectives. – Hazardous Chemicals. – 2025. – P. 743–754. – DOI:https://doi.org/10.1016/B978-0-323-95235-4.00003-7

30. Biotechnological importance of Actinomycetes / M. H. Kontro, J. S. Yaradoddi, N. R. Banapurmath [et al.] // Actinobacteria. Rhizosphere Biology. – Singapore : Springer, 2021. – P. 271–290. – DOI:https://doi.org/10.1007/978-981-16-3353-9_15

31. A review on bacterial contribution to lignocellulose breakdown into useful bio-products / O. B. Chukwuma, M. Rafatullah, H. A. Tajarudin [et al.] // International Journal of Environmental Research and Public Health. – 2021. – Vol. 18. – P. 6001. – DOI:https://doi.org/10.3390/ijerph18116001

32. Nakamura, S. Decomposition of rice chaff using a cocultivation system of Thermobifida fusca and Ureibacillus thermosphaericus / S. Nakamura, N. Kurosawa // Proceedings. – 2021. – Vol. 66, № 1. – P. 31. – DOI:https://doi.org/10.3390/proceedings2020066031

33. Thermophilic fungi and their enzymes for biorefineries / A. Sharma, A. Sharma, S. Singh [et al.] // Fungi in Extreme Environments: Ecological Role and Biotechnological Significance / ed. by S. Tiquia-Arashiro, M. Grube. – Cham : Springer, 2019. – P. 479–502. – DOI:https://doi.org/10.1007/978-3-030-19030-9_24

34. Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives / S. Lee, M. Kang, J.-H. Bae [et al.] // Frontiers in Bioengineering and Biotechnology. – 2019. – Vol. 7. – P. 209. – DOI:https://doi.org/10.3389/fbioe.2019.00209

35. Xie, S. Lignin conversion: opportunities and challenges for the integrated biorefinery / S. Xie, A. J. Ragauskas, J. S. Yuan // Industrial Biotechnology. – 2016. – Vol. 12. – P. 161–167. – DOI:https://doi.org/10.1089/ind.2016.0007

36. Lignin depolymerization and utilization by bacteria / R. Xu, K. Zhang, P. Liu [et al.] // Bioresource Technology. – 2018. – Vol. 269. – P. 557–566. – DOI:https://doi.org/10.1016/j.biortech.2018.08.118

37. Nocardia rosealba sp. nov., a novel ligninase-producing Actinobacterium isolated from soil / Z. Huang, C. He, Z. Wang [et al.] // International Journal of Systematic and Evolutionary Microbiology. – 2022. – Vol. 72, № 6. – P. 005416. – DOI:https://doi.org/10.1099/ijsem.0.005416

38. Prospects of Pseudomonas in microbial fuel, bioremediation, and sustainability / Y. J. Song, N. L. Zhao, D. R. Dai [et al.] // ChemSusChem. – 2025. – Vol. 18, № 2. – P. e202401324. – DOI:https://doi.org/10.1002/cssc.202401324

39. Kraft lignin decomposition by lignin-derived aromatic compound degrader Rhodococcus sp. DK17 / D. Kim, M. Kim, H.-W. Kim [et al.] // World Journal of Microbiology and Biotechnology. – 2025. – Vol. 41. – P. 127. – DOI:https://doi.org/10.1007/s11274-025-04350-6

40. Hydroxyl radicals production via quinone redox cycling by the ligninolytic bacteria Streptomyces cyaneus and its effectiveness to degrade kraft lignin / J. M. Molina-Guijarro, F. Guillén, J. Rodríguez [et al.] // Wood Science and Technology. – 2025. – Vol. 59. – P. 44. – DOI:https://doi.org/10.1007/s00226-025-01643-9

41. Zhou, Q. Lignin-degrading enzymes and the potential of Pseudomonas putida as a cell factory for lignin degradation and valorization / Q. Zhou, A. Fransen, H. de Winde // Microorganisms. – 2025. – Vol. 13. – P. 935. – DOI:https://doi.org/10.3390/microorganisms13040935

42. Metagenomic insights into the lignocellulose degradation mechanism during short-term composting of peach sawdust: core microbial community and carbohydrate-active enzyme profile analysis / W. W. Zhang, Y. X. Guo, Q. J. Chen [et al.] // Environmental Technology and Innovation. – 2025. – Vol. 37. – P. 103959. – DOI:https://doi.org/10.1016/j.eti.2024.103959

43. Enhancing composting efficiency of horticultural residues through wheat straw addition: microbial mechanisms driving metabolic heat generation / Y. Hu, H. Li, B. Tian [et al.] // Journal of Environmental Management. – 2025. – Vol. 377. – P. 124632. – DOI:https://doi.org/10.1016/j.jenvman.2025.124632

44. Benatti, A. L. T. Lignocellulolytic biocatalysts: the main players involved in multiple biotechnological processes for biomass valorization / A. L. T. Benatti, M. L. T. M. Polizeli // Microorganisms. – 2023. – Vol. 11, № 1. – P. 162. – DOI:https://doi.org/10.3390/microorganisms11010162

45. Zoghlami, A. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis / A. Zoghlami, G. Paës // Frontiers in Chemistry. – 2019. – Vol. 7. – DOI:https://doi.org/10.3389/fchem.2019.00874

46. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution / G. Janusz, A. Pawlik, J. Sulej [et al.] // FEMS Microbiology Reviews. – 2017. – Vol. 41. – P. 941–962. – DOI:https://doi.org/10.1093/femsre/fux049

47. Applications of white rot fungi in bioremediation with nanoparticles and biosynthesis of metallic nanoparticles / K. He, G. Chen, G. Zeng [et al.] // Applied Microbiology and Biotechnology. – 2017. – Vol. 101. – P. 4853–4862. – DOI:https://doi.org/10.1007/s00253-017-8328-z

48. Pathways for degradation of lignin in bacteria and fungi / T. D. H. Bugg, M. Ahmad, E. M. Hardiman [et al.] // Nature Product Reports. – 2011. – Vol. 28. – P. 1883–1896. – DOI:https://doi.org/10.1039/c1np00042j

49. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism / N. Kamimura, K. Takahashi, K. Mori [et al.] // Environmental Microbiology Reports. – 2017. – Vol. 9. – P. 679–705. – DOI:https://doi.org/10.1111/1758-2229.12597

50. Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing / D. J. Levy-Booth, L. E. Navas, M. M. Fetherolf [et al.] // ISME Journal. – 2022. – Vol. 16. – P. 1944–1956. – DOI:https://doi.org/10.1038/s41396-022-01241-8

51. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing / R. C. Wilhelm, R. Singh, L. D. Eltis [et al.] // ISME Journal. – 2019. – Vol. 13. – P. 413–429. – DOI:https://doi.org/10.1038/s41396-018-0279-6

52. Singh, N. Secretomics of wood-degrading fungi and anaerobic rumen fungi associated with biodegradation of recalcitrant plant biomass / N. Singh, J. Singh // Recent Advancement in White Biotechnology Through Fungi. Fungal Biology / ed. by A. Yadav, S. Singh, S. Mishra, A. Gupta. – Cham : Springer, 2019. – P. 1–16. – DOI:https://doi.org/10.1007/978-3-030-25506-0_1

53. Gilbertson, R. L. Wood-rotting fungi of North America / R. L. Gilbertson // Mycologia. – 1980. – Vol. 72, № 1. – P. 1–49. – DOI:https://doi.org/10.1080/00275514.1980.12021153

54. Arantes, V. Current understanding of brown-rot fungal biodegradation mechanisms: a review / V. Arantes, B. Goodell // Deterioration and protection of sustainable biomaterials. – 2014. – P. 3–21. – DOI:https://doi.org/10.1021/bk-2014-1158.ch001

55. Evolutionary dynamics of host specialization in wood-decay fungi / F. S. Krah, C. Bässler, C. Heibl [et al.] // BMC Evolutionary Biology. – 2018. – Vol. 18. – P. 119. –DOI:https://doi.org/10.1186/s12862-018-1229-7

56. Characterisation of the initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brownrot fungus Coniophora puteana / I. Irbe, I. Andersone, B. Andersons [et al.] // Biodegradation. – 2011. – Vol. 22. – P. 719–728. – DOI:https://doi.org/10.1007/s10532-010-9449-6

57. Transcriptomic insights into the degradation mechanisms of Fomitopsis pinicola and its host preference for coniferous over broadleaf deadwood / J. Xue, Y. Wei, L. Chen [et al.] // Microorganisms. – 2025. – Vol. 13. – P. 1006. – DOI:https://doi.org/10.3390/microorganisms13051006

58. Kamei, I. Wood-rotting fungi for biofuel production / I. Kamei // Fungi in Fuel Biotechnology. Fungal Biology / ed. by G. Salehi Jouzani, M. Tabatabaei, M. Aghbashlo. – Cham : Springer, 2020. – P. 123–147. – DOI:https://doi.org/10.1007/978-3-030-44488-4_6

59. Molecular breeding of lignin-degrading brown-rot fungus Gloeophyllum trabeum by homologous expression of laccase gene / M. Arimoto, K. Yamagishi, J. Wang [et al.] // AMB Express. – 2015. – Vol. 5. – P. 81. – DOI:https://doi.org/10.1186/s13568-015-0173-9

60. Outdoor wood mats-based engineering composite: influence of process parameters on decay resistance against wood-degrading fungi Trametes versicolor and Gloeophyllum trabeum / M. Bao, N. Li, Y. Bao [et al.] // Polymers. – 2021. – Vol. 13. – P. 3173. – DOI:https://doi.org/10.3390/polym13183173

61. Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass / B. Bissaro, A. Várnai, Å. K. Røhr [et al.] // Microbiology and Molecular Biology Reviews. – 2018. – Vol. 82. – P. e00029–18. – DOI:https://doi.org/10.1128/MMBR.00029-18

62. Lignin-enzyme interactions in the hydrolysis of lignocellulosic biomass / A. C. dos Santos, E. Ximenes, Y. Kim [et al.] // Trends in Biotechnology. – 2018. – S0167–7799. – P. 30306–30308. – DOI:https://doi.org/10.1016/j.tibtech.2018.10.010

63. Recent advances in synthesis and degradation of lignin and lignin nanoparticles and their emerging applications in nanotechnology / V. K. Yadav, N. Gupta, P. Kumar [et al.] // Materials. – 2022. – Vol. 15. – P. 953. – DOI:https://doi.org/10.3390/ma15030953

64. Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping / T. Cui, B. Yuan, H. Guo [et al.] // Biotechnology for Biofuels. – 2021. – Vol. 14. – P. 162. – DOI:https://doi.org/10.1186/s13068-021-02011-y

65. Characterizing fungal decay of beech wood: potential for biotechnological applications / E. Bari, K. Ohno, N. Yilgor [et al.] // Microorganisms. – 2021. – Vol. 9. – P. 247. – DOI:https://doi.org/10.3390/microorganisms9020247

66. Ferrari, R. Lignin degradation by ascomycetes / R. Ferrari, V. Gautier, P. Silar // Advances in Botanical Research / ed. by M. Morel-Rouhier, R. Sormani. – New York : Academic Press, 2021. – P. 77–113. – DOI:https://doi.org/10.1016/bs.abr.2021.05.006

67. Evidence for ligninolytic activity of the ascomycete fungus Podospora anserine / G. van Erven, A. F. Kleijn, A. Patyshakuliyeva [et al.] // Biotechnology for Biofuels. – 2020. – Vol. 13. – P. 75. –DOI:https://doi.org/10.1186/s13068-020-01713-z

68. Bacterial enzymes involved in lignin degradation / G. de Gonzalo, D. I. Colpa, M. H. Habib [et al.] // Journal of Biotechnology. – 2016. – Vol. 236. – P. 110–119. – DOI:https://doi.org/10.1016/j.jbiotec.2016.08.011

69. The bacterial degradation of lignin – a review / D. Grgas, M. Rukavina, D. Bešlo [et al.] // Water. – 2023. – Vol. 15. – P. 272. – DOI:https://doi.org/10.3390/w15071272

70. Christopher, L. P. Lignin biodegradation with laccase-mediator systems / L. P. Christopher, B. Yao, Y. Ji // Frontiers in Energy Research. – 2014. – Vol. 2. –P. 12. – DOI:https://doi.org/10.3389/fenrg.2014.00012

71. Lignocellulose degradation mechanisms across the tree of life / S. M. Cragg, G. T. Beckham, N. C. Bruce [et al.] // Current Opinion in Chemical Biology. – 2015. – Vol. 29. – P. 108–119. – DOI:https://doi.org/10.1016/j.cbpa.2015.10.018

72. Wood decay fungi and their bacterial interaction partners in the built environment – a systematic review on fungal bacteria interactions in dead wood and timber / J. Embacher, S. Zeilinger, M. Kirchmair [et al.] // Fungal Biology Reviews. – 2023. – Vol. 45. – P. 100305. – DOI:https://doi.org/10.1016/j.fbr.2022.100305

73. Effect of cultivation conditions on mycelial growth and antibacterial activity of Lentinula edodes and Fomitopsis betulina / T. A. Krupodorova, V. Yu. Barshteyn, T. O. Kizitska [et al.] // Czech Mycology. – 2019. – Vol. 71, № 2. – P. 167–186. – DOI:https://doi.org/10.33585/cmy.71204

74. Effects of cultivation parameters on intracellular polysaccharide production in submerged culture of the edible medicinal mushroom Lentinula edodes / N. Bisko, K. Mustafin, G. Al-Maali [et al.] // Czech Mycology. – 2020. – Vol. 72, № 1. – P. 1–17. – DOI:https://doi.org/10.33585/cmy.72101

75. Krupodorova, T. A. Review of the basic cultivation conditions influence on the growth of basidiomycetes / T. A. Krupodorova, V. Y. Barshteyn, A. S. Sekan // Current Research in Environmental and Applied Mycology. – 2021. – Vol. 11, № 1. – P. 494–531. – DOI:https://doi.org/10.5943/cream/11/1/34

76. Mushroom strains able to grow at high temperatures and low pH values / S. A. Furlan, L. J. Virmond, D. A. Miers [et al.] // World Journal of Microbiology & Biotechnology. – 1997. – Vol. 13. – P. 689–692. – DOI:https://doi.org/10.1023/A:1018579123385

77. Salmones, D. Cultivation of Mexican wild strains of Agaricus bisporus, the button mushroom, under different growth conditions in vitro and determination of their productivity / D. Salmones, R. Gaitan-Hernandez, G. Mata // Biotechnology, Agronomy and Society and Environment. – 2018. – Vol. 22, № 1. – P. 45–53. – DOI:https://doi.org/10.25518/1780-4507.16281

78. Optimization of culture conditions for mycelial growth and basidiocarp production of Cyclocybe cylindracea (Maire) / H. R. R. Landingin, B. E. Francisco, R. M. R. Dulay [et al.] // CLSU International Journal of Science and Technology. – 2020. – Vol. 4, № 1. – P. 1–17. – DOI:https://doi.org/10.22137/ijst.2020.v4n1.01

79. Effect of different agro-wastes, casing materials and supplements on the growth, yield and nutrition of milky mushroom (Calocybe indica) / H. Sardar, M. A. Anjum, A. Nawaz [et al.] // Folia Horticulturae. – 2020. – Vol. 32, № 1. – P. 115–124. – DOI:https://doi.org/10.2478/fhort-2020-0011

80. Influence of nutritional and climatic conditions on mycelial growth of three oyster mushroom strains / N. H. Abdel Aziz, N. S. Yousef, M. E. El-Haddad [et al.] // Arab Universities Journal of Agricultural Sciences. – 2018. – Vol. 26, № 2A. – P. 1165–1173. – DOI:https://doi.org/10.21608/ajs.2018.28368

81. Effect of different media, pH and temperature on growth of Pleurotus ostreatus / A. Pant, V. Kumar, S. S. Bisht [et al.] // Journal of Bio Innovation. – 2020. – Vol. 9, № 2. – P. 132–140.

82. Optimization of culture conditions for mycelial growth and fruiting body production of naturally-occurring Philippine mushroom Lentinus swartzii Berk. / R. M. R. Dulay, E. C. Cabrera, S. P. Kalaw [et al.] // Journal of Applied Biology and Biotechnology. – 2021. – Vol. 9, № 3. – P. 17–25. – DOI:https://doi.org/10.7324/JABB.2021.93038

83. Cultural and physiological studies on wild mushroom specimens of Schizophyllum commune and Lentinula edodes / B. P. K. Reddy, A. U. Rajashekhar, P. Harikrishna [et al.] // International Journal of Current Microbiology and Applied Sciences. – 2017. – Vol. 6, № 7. – P. 2352–2357. – DOI:https://doi.org/10.20546/ijcmas.2017.607.278

84. Hoa, H. T. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus) / H. T. Hoa, C. L. Wang // Mycobiology. – 2015. – Vol. 43, № 1. – P. 14–23. – DOI:https://doi.org/10.5941/myco.2015.43.1.14

85. Mycelial growth of the edible wild mushrooms Floccularia luteovirens in different culture mediums and pH / Y. Arana-Gabriel, C. Burrola-Aguilar, A. Alcala-Adan [et al.] // Agro Productividad. – 2020. – Vol. 13, № 10. – P. 33–38. – DOI:https://doi.org/10.32854/agrop.v13i10.1745

86. Current insights in fungal importance – a comprehensive review / V. M. Corbu, I. Gheorghe-Barbu, A. Ș. Dumbravă Adan [et al.] // Microorganisms. – 2023. – Vol. 11, № 6. – P. 1384. – DOI:https://doi.org/10.3390/microorganisms11061384

87. Effects of supplementation of sea buckthorn press cake on mycelium growth and polysaccharides of Inonotus obliquus in submerged cultivation / G. Beltrame, J. Hemming, H. Yang [et al.] // Journal of Applied Microbiology. – 2021 – № 131 (3). –P. 1318–1330. – DOI:https://doi.org/10.1111/jam.15028

88. Akinyele, B. J. Effect of agrowastes, pH and temperature variation on the growth of Volvariella volvacea / B. J. Akinyele, F. C. Adetuyi // African Journal of Biotechnology. – 2005. – Vol. 4, № 12. – P. 1390–1395.

89. Teoh, Y. P. Effect of temperature on Schizophyllum commune growth and 4Hpyran-4-one,2,3-dihydro-3, 5-dihydroxy-6-methyl- production using a bubble column bioreactor / Y. P. Teoh, M. M. Don // Chiang Mai Journal of Science. – 2016. – Vol. 43, № 3. – P. 461–468.

90. Influence of temperature and pH on mycelial growth and chlamydospore production of paddy straw mushroom Volvariella volvaceae (Bull. Ex Fr.) / N. K. Kumar, A. S. Krishnamoorthy, A. Kamalakannan [et al.] // The Journal of Research ANGRAU. – 2016. – Vol. 44 (1–2). – P. 1–7.

91. Rosnan, N. D. First record of in vitro growth evaluation of wild mushroom, Schizophyllum commune from Pulau Kapas in Malaysia / N. D. Rosnan, N. Chuen, A. A. Ngadin // Asian Journal of Agriculture and Biology. – 2019. – Vol. 7, № 4. – P. 602–609.

92. Optimization of mycelia growth parameters for wild white rot fungi Trametes elegans and Trametes versicolor / S. Sagar, M. Thakur, I. Sharma [et al.] // Asia Life Sciences. – 2020. – Vol. 12, № 1. – P. 5–14.

93. Effect of cultural variability on mycellial growth of eleven mushroom isolates of Pleurotus spp. / M. V. Phadke, A. C. Jadhav, M. C. Dhavale [et al.] // Journal of Pharmacognosy and Phytochemistry. – 2020. – Vol. 9, № 6. – P. 881–888.

94. Studies on optimization of culture conditions and medium components for the production of mycelial biomass of Auricularia delicata under submerged fermentation / M. S. Jacob, L. Xiao, M. F. Stephano [et al.] // Asian Journal of Biology. – 2020. – Vol. 10, № 4. – P. 56–67.

95. Elisashvili, V. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review) / V. Elisashvili // International Journal of Medicinal Mushrooms. – 2012. – Vol. 14, № 3. – P. 211–239.

96. Effect of physicochemical components on mycelial growth of Agaricus bisporus – a popular edible mushroom / M. Ismail, G. Kibriya, J. Hossain [et al.] // Plant Environment Development. – 2016. – Vol. 5, № 1. – P. 7–12.

97. Culture characteristics and optimal conditions for mycelial growth of Calocybe indica / G. J. Min, H. S. Park, E. J. Lee [et al.] // Korean Journal of Mycology. – 2020. – Vol. 48, № 3. – P. 273–284. – DOI:https://doi.org/10.4489/KJM.20200027

98. Aminah, M. H. S. Influence of pH and temperature on in vitro mycelial growth performance of wild edible Schizophyllum commune of northern Malaysia / M. H. S. Aminah, S. T. Sam, Z. Zakaria // AIP Conference Proceedings. – 2020. – Vol. 2291. – P. 020100. – DOI:https://doi.org/10.1063/5.0023889

99. Sravani, B. Influence of media, pH and temperature on the growth of Sclerotium rolfsii (Sacc.) causing collar rot of chickpea / B. Sravani, R. Chandra // Journal of Pharmacognosy and Phytochemistry. – 2020. – Vol. 9, № 1. – P. 174–178.

100. The influence of carbon and nitrogen sources in nutrient media on biomass accumulation by basidiomycetes medicinal mushrooms genus Trametes (Fr.) / I. R. Klechak, N. A. Bisko, N. Y. Mytropolska [et al.] // Naukovi Visti NTUU KPI. – 2014. – Vol. 3. – P. 52–57.

101. Lazarević, J. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest / J. Lazarević, D. Stojičić, N. Keča // Forest Systems. – 2016. – Vol. 25, № 1. – P. e048. – DOI:https://doi.org/10.5424/fs/2016251-07036

102. Suitable conditions for mycelial growth of Phellinus spp. / H. Hur, A. Imtiaj, M. W. Lee [et al.] // Mycobiology. – 2008. – Vol. 36, № 3. – P. 152–156.

103. Pekşen, A. Determination of optimum culture conditions for mycelial growth of Macrolepiota procera mushroom / A. Pekşen, B. Kibar // Acta Scientiarum Polonorum Hortorum Cultus. – 2020. – Vol. 19, № 1. – P. 11– 20. – DOI:https://doi.org/10.24326/asphc.2020.1.2

104. Culture conditions for the mycelial growth of Ganoderma applanatum / W. S. Jo, Y. J. Cho, D. H. Cho [et al.] // Mycobiology. – 2009 – Vol. 37, № 2. – P. 94–102. – DOI:https://doi.org/10.4489/myco.2009.37.2.094

105. The culture conditions for the mycelial growth of Auricularia auricula-judae / W. S. Jo, D. G. Kim, S. J. Seok [et al.] // Journal of Mushroom. – 2014. – Vol. 12, № 2. – P. 88–95. – DOI:https://doi.org/10.14480/JM.2014.12.2.88

106. The optimal culture conditions for the mycelial growth of Oudemansiella radicata / S. B. Kim, S. H. Kim, K. R. Lee [et al.] // Mycobiology. – 2005. – Vol. 33, № 4. – P. 230–234. – DOI:https://doi.org/10.4489/MYCO.2005.33.4.230

107. Ma, Y. Biological characteristics for mycelial growth of Agaricus bisporus / Y. Ma, C. Y. Guan, X. J. Meng // Applied Mechanics and Materials. – 2014. – Vol. 508. – P. 297–302.

108. Yazıcı, S. Ö. Optimization for coproduction of protease and cellulase from Bacillus subtilis M-11 by the Box-Behnken design and their detergent compatibility / S. Ö. Yazıcı, I. Özmen // Brazilian Journal of Chemical Engineering. – 2020. – Vol. 37. – P. 49–59. – DOI:https://doi.org/10.1007/s43153-020-00025-x

109. Goswami, K. Purification and characterization of cellulase produced by Novosphingobium sp. CM1 and its waste hydrolysis efficiency and bio-stoning potential / K. Goswami, H. P. D. Boruah, R. Saikia // Journal of Applied Microbiology. – 2022. – Vol. 132. – P. 3618–3628. – DOI:https://doi.org/10.1111/jam.15475

110. Recombinant cellulase of Caulobacter crescentus: potential applications for biofuels and textile industries / L. Bussler, D. Jacomini, J. M. Corrêa [et al.] // Cellulose. – 2021. – Vol. 28. – P. 2813–2832. – DOI:https://doi.org/10.1007/s10570-021-03700-5

111. Impact of cellulase and lactic acid bacteria inoculant to modify ensiling characteristics and in vitro digestibility of sweet corn stover and cassava pulp silage / C. Kaewpila, S. Thip-Uten, A. Cherdthong [et al.] // Agriculture. – 2021. – Vol. 11. – P. 66. – DOI:https://doi.org/10.3390/agriculture11010066

112. An in vitro study on the role of cellulases and xylanases of Bacillus subtilis in dairy cattle nutrition / V. Bontà, M. Battelli, E. Rama [et al.] // Microorganisms. – 2024. – Vol. 12. – P. 300. – DOI:https://doi.org/10.3390/microorganisms12020300

113. Cicekler, M. Effects of cellulase enzyme in deinking of solvent-based inks from mixed office wastes / M. Cicekler, A. Tutus / Biocatalysis and Biotransformation. – 2020. – Vol. 39. – P. 152–160. – DOI:https://doi.org/10.1080/10242422.2020.1834538

114. Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste / A. Karthika, R. Seenivasagan, R. Kasimani [et al.] // Waste Management. – 2020. – Vol. 116. – P. 58–65. – DOI:https://doi.org/10.1016/j.wasman.2020.06.036

115. Combined strategies for improving the heterologous expression of a novel xylanase from Fusarium oxysporum FO47 in Pichia pastoris / C. Liu, Y. Zhang, C. Ye [et al.] // Synthetic and Systems Biotechnology. – 2024. – Vol. 9. – P. 426–435. – DOI:https://doi.org/10.1016/j.synbio.2024.03.012

116. Immobilization of xylanase on ZnO nanoparticles obtained by green synthesis from Eupatorium cannabinum L. and its application in enrichment of fruit juices / S. S. Pekdemir, B. Bakar, R. Taş [et al.] // Molecular Catalysis. – 2024. – Vol. 562. – P. 114232. – DOI:https://doi.org/10.1016/j.mcat.2024.114232

117. Expression in Pichia pastoris of thermostable endo-1,4-β-xylanase from the actinobacterium Nocardiopsis halotolerans: properties and use for saccharification of xylan-containing products / A. V. Lisov, O. V. Belova, A. A. Belov [et al.] // International Journal of Molecular Sciences. – 2024. – Vol. 25. – P. 9121. – DOI:https://doi.org/10.3390/ijms25169121

118. Xylanase treatment of eucalypt kraft pulps: effect of carryover / J. M. S. Matos, D. V. Evtuguin, A. P. Mendes de Sousa [et al.] // Applied Microbiology and Biotechnology. – 2024. – Vol. 108. – P. 210. – DOI:https://doi.org/10.1007/s00253-024-13027-3

119. Synergistic effect of cellulo-xylanolytic and laccase enzyme consortia for improved deinking of waste papers / G. K. Gupta, R. K. Kapoor, D. Chhabra [et al.] // Bioresource Technology. – 2024. – Vol. 408. – P. 131173. – DOI:https://doi.org/10.1016/j.biortech.2024.131173

120. Lignin degradation by selected fungal species / A. Knežević, I. Milovanović, M. Stajić [et al.] // Bioresource Technology. – 2013. – Vol. 138. – P. 117–123.

121. Fungal solid-state fermentation and various methods of enhancement in cellulase production / L. W. Yoon, T. N. Ang, G. C. Ngoh [et al.] // Biomass and Bioenergy. – 2014. – Vol. 67. – P. 319–338. – DOI:https://doi.org/10.1016/j.biombioe.2014.05.013

122. Enzyme activity profiles produced on wood and straw by four fungi of different decay strategies / E. Veloz, T. Mali, H. K. Mattila [et al.] // Microorganisms. – 2020. – Vol. 8, № 1. – 73. – DOI:https://doi.org/10.3390/microorganisms8010073

123. Eco-friendly bleaching of agrowaste wheat straw using crude alkalo-thermotolerant cellulase-free xylano-pectinolytic enzymes / D. Sharma, R. Nagpal, S. Agrawal [et al.] // Applied Biochemistry and Biotechnoljgy. – Vol. 194. – P. 620–634. – DOI:https://doi.org/10.1007/s12010-021-03641-6

124. Bentil, J. A. Biocatalytic potential of basidiomycetes: relevance, challenges and research interventions in industrial processes / J. A. Bentil // Scientific African. – 2021. – Vol. 11. – P. e00717. – DOI:https://doi.org/10.1016/j.sciaf.2021.e00717

125. Metreveli, E. The carbon source controls the secretion and yield of polysaccharide-hydrolyzing enzymes of basidiomycetes / E. Metreveli, T. Khardziani, V. Elisashvili // Biomolecules. – 2021. – Vol. 11, № 9. – P. 1341. – DOI:https://doi.org/10.3390/biom11091341

126. Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes / P. de Oliveira Rodrigues, L. V. A. Gurgel, D. Pasquini [et al.] // Renewable Energy. – 2020. – Vol. 145. – P. 2683–2693. – DOI:https://doi.org/10.1016/j.renene.2019.08.041

127. Vetchinkina, E. P. Comparative characteristics of mycelial mats of xylotrophic basidiomycetes / E. P. Vetchinkina // Mycological Progress. – 2025. – Vol. 24. – P. 47. – DOI:https://doi.org/10.1007/s11557-025-02068-1

128. Valorization of lignocellulosic wastes for extracellular enzyme production by novel Basidiomycetes: screening, hydrolysis, and bioethanol production / N. Ilić, S. Davidović, M. Milić [et al.] // Biomass Conversion and Biorefinery. – 2023. – Vol. 13. – P. 17175–17186. – DOI:https://doi.org/10.1007/s13399-021-02145-x

129. Rice straw fermentation by Schizophyllum commune ARC-11 to produce high level of xylanase for its application in pre-bleaching / A. Gautam, A. Kumar, A. K. Bharti [et al.] // Journal of Genetic Engineering and Biotechnology. – 2018. – Vol. 16, № 2. – P. 693–701. – DOI:https://doi.org/10.1016/j.jgeb.2018.02.006

130. Shradhdha, S. Production of lignolytic and cellulolytic enzymes by using basidiomycetes fungi in the solid-state fermentation of different agro-residues / S. Shradhdha, D. S. Murty // Research Journal of Biotechnology. – 2020. – Vol. 15, № 9. – P. 10–17.

131. Sequential production of ligninolytic, xylanolytic, and cellulolytic enzymes by Trametes hirsuta AA-017 under different biomass of Indonesian sorghum accessions-induced cultures / A. Andriani, A. Maharani, D. H. Y. Yanto [et al.] // Bioresource Technology Reports. – 2020. – Vol. 12. – P. 100562. – DOI:https://doi.org/10.1016/j.biteb.2020.100562

132. Мартынов, В. В. Перспективы биотехнологической утилизации кородревесных отходов длительного срока хранения на основе микодеструкции / В. В. Мартынов, Т. Н. Щемелинина, Е. М. Анчугова // Поволжский экологический журнал. – 2024. – № 4. – С. 500–508. – DOI:https://doi.org/10.35885/1684-7318-2024-4-500-508

133. Мартынов, В. В. Валоризация лигноцеллюлозного отхода – кофейной шелухи / В. В. Мартынов, Т. Н. Щемелинина, Е. М. Анчугова // Известия Коми научного центра УрО РАН. Серия «Экспериментальная биология и экология». – 2024. – № 9 (75). – С. 75–79. – DOI:https://doi.org/10.19110/1994-5655-2024-9-75-79

Войти или Создать
* Забыли пароль?